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a b s t r a c t

As a generalization of p-center location problems, p-k-max problems minimize the kth
largest weighted distance to the customers. In this way, outlier facilities can be detected
automatically and excluded from consideration when locating new facilities. Similar to
p-center problems, p-k-max problems often have many alternative optimal solutions.
Knowledge of the complete optimal set allows to select a most preferred solution
using secondary criteria. In this paper, a general solution method is suggested that
guarantees to find all alternative optimal solutions of p-k-max problems on networks.
This is realized by performing a local analysis on the edges of the underlying graph
and identifying edge segments on which the p-k-max function is linear. It is shown that
the complete optimal set can be represented by an extended finite dominating set (FDS)
which is of polynomial size for fixed values of p. Numerical tests indicate that computing
the set of optimal solutions compared to the computation of a single optimal solution of
a p-k-max problem requires on average less than 15% additional computing effort. This
computational efficiency allows one to select the most preferred solution among them
using secondary objectives, like backup coverage or the Weber function.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Bottleneck objective functions are in general very sensitive to outliers and data errors. In the context of location
problems a small number of far-away customers, which we denote as outliers, can influence the solution of location
problems such that the distance to the majority of customers is increased dramatically. In economically motivated
situations this might lead to unfavorable solutions. Outliers in location problems are mainly not caused by data errors (in
contrast to applications in data science) but by very heterogeneous distributions of costumers.

There has been extensive work on different techniques for handling outliers in location problems. As the influence of
far-away facilities is most significant for center location problems, most approaches focus on this case. Continuous location
problems with outliers are considered, e.g., in [1] for Euclidean distances, and in [2] for l∞-distances. In [4,5] so-called
minquantile location problems are investigated, which can be considered a general case of k-max location problems. More
general cases are considered in [30] (high dimensional problems) and in [6] (finite metric spaces). Discrete location models
with outliers are discussed, e.g., in [7,28] and in [6].
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Generalizing the center objective by using the kth largest weighted distance between any customer and its closest
new facility instead of the largest weighted distance (where (k − 1) ∈ {0, 1, . . . , n − 1} specifies an acceptable number
of outliers) naturally limits the influence of far-away facilities. It can thus be applied as a general technique for handling
outliers. For a detailed introduction to k-max location problems, see [24] and [23]. The concept of k-max optimization also
occurs in the context of combinatorial optimization, see, e.g., [11,22] and [27]. Moreover, k-max functions are a special
case of the ordered median objective, see, e.g., [21] and [16].

It is well known that optimization problems with bottleneck objective tend to have many alternative optimal
solutions. This can be explained by the fact that bottleneck type objective functions (including k-max functions) usually
rely, when evaluated in an optimal solution, on only a small subset of customers/active constraints while all other
customers/constraints do not contribute/are inactive. Two ways to handle this ambiguity are the following: Either rank the
optimal solutions using, e.g., a lexicographic bottleneck objective function (see [3,25]) or compute all alternative optimal
solutions (see, e.g., [26,29]) and then apply a subsequent decision making process. A prominent example in the context
of location analysis is the maximization of backup coverage, see, e.g., [13].

In this paper, a general approach for the determination of the set of all optimal solutions of p-k-max problems on
networks is developed. Based on a detailed geometric analysis of the k-max function, including the identification of
linearity regions, a finite dominating set (FDS) is identified that can be used to represent the optimal set. It is shown
that the FDS has polynomial size as long as the number p of new facilities is fixed, and that it is usually relatively
small in practice. Moreover, a reduced FDS can be used to define seed points for a local analysis, also leading to a
complete description of the optimal set. It turns out that the local analysis is independent of the parameter k, and thus the
optimal sets for different values of k can be determined in parallel. Computational tests indicate that the potential gain
w.r.t. secondary objectives as, for example, total transportation cost, double coverage and evenly distributed capacities is
significant when a most preferred solution can be selected from the complete optimal set.

The reminder of this paper is organized as follows: Section 2 summarizes the notation and provides a formal definition
of k-max problems on graphs. In Section 3, an example illustrates the situation and some known results for p-k-max
problems are reviewed. Based on a local analysis, a finite dominating set leading to all optimal solutions of the problem
is deduced and further reduced in Section 4. The evaluation of these candidate sets is extensively tested and the results
are discussed in Section 5. The paper concludes with a short summary in Section 6.

2. Notation and problem definition

The p-k-max problem as considered in this paper is defined on a simple, connected and undirected graph G = (VG, E)
with node set VG = {v1, . . . , vnG} and edge set E = {e1, . . . , em} ⊆ VG × VG. Edges can be represented by their index,
i.e., ej ∈ E, or equivalently by their end nodes, i.e., ej = eab = [va, vb]. The set of customers, also referred to as clients, is
given by a subset V = {v1, . . . , vn} ⊆ VG, with n ≤ nG. The demand of customer vi ∈ V , i = 1, . . . , n is represented by
a strictly positive weight wi > 0. Distances are modeled by assigning a strictly positive length lj = lab > 0 to every edge
ej = eab ∈ E, and are assumed to be linear along the edges.

New facilities may be located in nodes and on edges. The continuum set of points on the edges of G is denoted by A(G),
with VG ⊆ A(G). A point x on an edge eab ∈ E is represented by a pair x = (eab, t) with t ∈ [0, 1], and it is equivalently
identified by the parameter t ∈ [0, 1] as long as the edge eab is fixed. Let the integer p ∈ {1, . . . , n} specify the number
of new facilities to be located. Then X = {x1, . . . , xp} ⊆ A(G) denotes a feasible set of p new facilities x1, . . . , xp ∈ A(G).

Now consider an edge eab ∈ E. The distance between a point x = (eab, t) on eab and an arbitrary customer vi ∈ V is
given by

d(vi, x) = min
{
d(vi, va) + t lab, d(vi, vb) + (1 − t)lab

}
,

where d(vi, va) denotes the length of the shortest path between vi and va. Note that d(vi, x) defines a metric on G.
Accordingly, the distance from a customer vi ∈ V to a set of new facilities X can be computed as

d(vi, X) = min
x∈X

d(vi, x).

The corresponding weighted distances from a customer vi ∈ V are denoted by dw(vi, x) = wi d(vi, x) and dw(vi, X) =

wi d(vi, X), respectively. The component-wise weighted distances between the finite set of customers V and the respective
closest new facility in the set X is then given by the vector

dw(V , X) =
(
dw(v1, X), . . . , dw(vn, X)

)⊤
.

Let k ∈ {1, . . . , n} denote the parameter of the k-max function that specifies the kth largest weighted distance to be
minimized. Then the p-k-max problem models the situation of locating a set X = {x1, . . . , xp} ⊆ A(G) of p new facilities
such that the kth largest weighted distance between the set of customers V and the set of new facilities X is minimized.
For a fixed set X of new facilities, the kth largest weighted distance between X and V can be identified using a permutation
σ of the customers that satisfies

dw(vσ (1), X) ≥ dw(vσ (2), X) ≥ · · · ≥ dw(vσ (n), X). (1)
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Fig. 1. An instance of a 3-2-max problem with an optimal solution X∗
= {x∗

1, x
∗

2, x
∗

3}.

Note that the permutation σ is in general not unique and that it depends on the current solution X . The set Σ(X) of all
permutations satisfying (1) is referred to as the set of valid permutations w.r.t. X . The p-k-max problem is now given by

min
X⊆A(G)
|X |=p

k-max(dw(V , X)) = min
X⊆A(G)
|X |=p

wσ (k) d(vσ (k), X) for σ ∈ Σ(X). (pkMG)

In [24] it is shown that the p-k-max problem always has an optimal solution. Since the set of optimal solutions for
p-k-max problems with k ≥ n− p+ 1 can be given explicitly [24], only p-k-max problems with k ≤ n− p are considered
in the following.

3. Finite dominating sets: Finding specific optimal solutions

The p-k-max problem (pkMG) can be interpreted as a p-center problem with the automatic detection of (k−1) outliers.
Outlier sets thus play a decisive role in this context. For a fixed solution X = {x1, . . . , xp} and a valid permutation
σ ∈ Σ(X), the set

Vk−1 = {vσ (1), . . . , vσ (k−1)} ⊆ V

is referred to as an outlier set associated to X . If Vk−1 is not unique, it is assumed that Vk−1 is chosen arbitrarily but fixed.
The customers in the set V \ Vk−1 are called center defining customers w.r.t. X . An outlier set associated to an optimal
solution X∗ is denoted by V ∗

k−1 and called an optimal outlier set. Moreover, each new facility xi ∈ X , i = 1, . . . , p, gives
rise to a set Ci ⊆ V \ Vk−1 of customers that are covered by the respective new facility. To avoid ambiguities, each center
defining customer is allocated to the lowest numbered facility that covers it, i.e., the clusters Ci are defined as:

Ci =
{
v ∈ V \ Vk−1:dw(v, xi) ≤ dw(v, xℓ) ∀ ℓ > i

∧ dw(v, xi) < dw(v, xℓ) ∀ ℓ < i
}
, i = 1, . . . , p. (2)

The maximum distance between a new facility xi ∈ X , i ∈ {1, . . . , p} and a most distant customer in the associated cluster
Ci is called the radius of the cluster Ci, i.e., ri = maxv∈Ci d

w(v, xi).

Example 3.1. An instance of a 3-2-max problem is illustrated in Fig. 1. The set of customers is given by V = VG and all
customers are weighted equally, i.e., wi = 1 for all vi ∈ V . Edge lengths lj, ej ∈ E, correspond to the Euclidean distances
in the depicted embedding of G.

Fig. 1 shows an optimal solution X∗
= {x∗

1, x
∗

2, x
∗

3} together with the respective clusters C1, C2, C3. An optimal outlier
set is given by the node that is not contained in any of the three clusters, i.e., V ∗

1 = V \ (C1 ∪ C2 ∪ C3). Accordingly, the
set of center defining customers w.r.t. X∗ is given by V \ V ∗

1 = C1 ∪ C2 ∪ C3.

Example 3.1 illustrates that the k-max value z of the solution X∗ is defined by a cluster with largest radius, in this case
by the cluster C1. In the following, a new facility xi ∈ X , i ∈ {1, . . . , p} for which ri = z is called an objective value defining
facility. In Example 3.1, the objective value defining facility x∗

1 is unique. However, in general an objective value defining
facility does not have to be unique, and several clusters may have the same radius.

Similar to the classical p-center problem (see, e.g., [12,18,19]), finite dominating sets (FDS) are a powerful tool to
efficiently determine at least one optimal solution of the p-k-max problem. Schnepper et al. [24] suggest a polynomial time
recursive algorithm for the determination of a subset of optimal solutions that is based on the computation of so-called
equilibrium points, first defined in [20]. The result is based on the fact that the k-max objective function is piecewise
linear on A(G)p and that equilibrium points can be used to specify candidate locations yielding local minima. In order
to compute the complete optimal set, however, the linearity regions of the objective function have to be specified more
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precisely. Definition 3.2 identifies equilibrium points and bottleneck points, respectively, as critical point sets in this context.
An FDS for minquantile location problems in the plane is suggested in [5] which can be extended to location problems
on networks yielding an FDS similar to the one in [24].

Definition 3.2.

(a) For vi, vj ∈ V , i ̸= j, let

EQ ′

ij =
{
x ∈ A(G) : wi d(vi, x) = wj d(vj, x)

}
,

and let EQij be the relative boundary of EQ ′

ij. Then the set of equilibrium points of G is given by EQ :=
⋃

vi,vj∈V , i̸=j EQij.
(b) x = (eab, t) on eab ∈ E is called a bottleneck point w.r.t. vi ∈ V , if

wi(d(vi, va) + d(va, x)) = wi(d(vi, vb) + d(vb, x)) = dw(vi, x).

The set BNi denotes the set of all bottleneck points w.r.t. vi ∈ V and BN :=
⋃n

i=1 BNi is the set of all bottleneck points
of G.

Now the FDS results of Schnepper et al. [24] can be summarized and extended as follows:

Theorem 3.3. Consider an instance of a p-k-max-problem with n ≥ 2, p ∈ {1, . . . , n} and k ∈ {1, . . . , n − p}.

(a) If p = 1, then all optimal solutions can be found in the set EQ .
(b) If p ≥ 2, then at least one optimal solution X∗

= {x∗

1, . . . , x
∗
p}, where w.l.o.g. x∗

1 is an objective value defining facility, can
be found in the set C p≥2

:= EQ × (EQ ∪ V )p−1. Moreover, every optimal solution has an objective value defining facility
in the set EQ .

Proof. Statement (a) and the first part of statement (b) are proven in [24]. It remains to show that every optimal solution
has an objective value defining facility in the set EQ .

Towards this end, let X∗
= {x∗

1, . . . , x
∗
p} ⊆ A(G) be an optimal solution with associated outlier set V ∗

k−1. Let Cℓ for all
ℓ ∈ {1, . . . , p} denote the clusters of the new facilities x∗

1, . . . , x
∗
p according to (2). Then X∗ is an optimal solution of the

p-center problem with customers V \ V ∗

k−1 (see Theorem 3.1. in [24]). Moreover, at least one objective value defining
facility is an optimal 1-center of its respective cluster since otherwise a better solution could easily be constructed by
moving these facilities to the respective 1-centers. Since k ≤ n − p and |V \ V ∗

k−1| ≥ p + 1, at least one of the clusters
Cℓ, ℓ ∈ {1, . . . , p} contains at least two customers, and hence this is also the case for the clusters of all objective value
defining facilities. That X∗ has the desired property now follows from statement (a) of Theorem 3.3 for k = p = 1. □

The cardinality of the FDS from Theorem 3.3 can be bounded by |C p≥2
| ∈ O(mpn2p). Schnepper et al. [24] suggest a

recursive algorithm that determines all optimal solutions in the set C p≥2 in at most O(mpn3p) time. Note that the set
of optimal solutions XCp≥2 found with this approach does, in general, not contain all optimal solutions of the p-k-max
problem. However, all objective value defining facilities that lead to at least one optimal solution of the p-k-max problem
are known after the evaluation of the set C p≥2.

4. Local analysis: Finding all optimal solutions

In this section, the FDS C p≥2 from Theorem 3.3 is extended to a new candidate set that is a superset of C p≥2 and that
contains alternative optimal solutions which have other properties than the candidates in C p≥2. The aim of this section is
to determine the set X ∗ of all optimal solutions of the p-k-max problem. The idea is to perform a local analysis over each
edge of the graph in order to generate a subdivision of A(G) such that the k-max objective function is piecewise linear
and concave on every cell of this subdivision. The resulting FDS can afterwards be reduced by using the objective value
defining facilities obtained with the FDS C p≥2.

The general approach of a local analysis and the notation used in the following are similar to that of Kalcsics [14],
who derived an FDS for the multi-facility median problem with positive and negative weights on general graphs, and
introduced an efficient solution procedure based on analyzing regions of fixed allocations with the help of an arrangement
of hyperplanes in Rp. A similar approach is also used in [15] for multicriteria p-median problems and in [17] for location
problems with equity objectives.

An example with p = 2 new facilities is used to illustrate the concept. Note, however, that the approach is applicable
in general, i.e., for all p ≥ 2.

Example 4.1. Consider the weighted graph G shown in Fig. 2. An optimal solution of the 2-1-max problem is

X =

{(
e34,

1
3

)
,

(
e12,

1
3

)}
∈ C p≥2
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Fig. 2. Two optimal solutions X ∈ C p≥2 and X̄ /∈ C p≥2 of a 2-1-max problem.

Fig. 3. Distance functions dw(vi, x) over the edges e34 (left) and e15 (right), with di = dw(vi, x), i = 1, . . . , 5.

with clusters C1 = {v2, v3, v4, v5} and C2 = {v1}, and with optimal objective value z =
4
3 (which can be determined by

enumerating C p≥2). An alternative optimal solution is X̄ = {x̄1, x̄2} given by

x̄1 =

(
e34,

1
3

)
∈ EQ45 ⊆ EQ and x̄2 =

(
e15,

2
3

)
/∈ EQ ∪ V

associated outlier set is empty. Obviously, X̄ cannot be found using the set C p≥2 as x̄2 is neither an equilibrium point nor
a node of G.

To characterize optimal solutions not lying in the FDS C p≥2, weighted distances to customers are analyzed over the
edges of G. Given an edge eab ∈ E, the weighted distance dw(vi, x) between a new facility x = (eab, t) (with t ∈ [0, 1])
and a customer vi ∈ V can be interpreted as a function of the parameter t which is piecewise linear and concave with
breakpoints only at bottleneck points.

Example 4.2 (Continuation of Example 4.1). Fig. 3 shows the graphs of the weighted distance functions over the edges
e34 = (v3, v4) and e15 = (v1, v5) which contain the two new facilities x̄1 and x̄2, respectively. Note that x̄1 ∈ EQ is an
objective value defining facility. In this particular solution, x̄2 is also objective value defining, and it holds that

dw(v2, x̄1) = dw(v4, x̄1) = dw(v1, x̄2) =
4
3

and r̄1 = r̄2,

i.e., both clusters C̄1 and C̄2 have the same radius. This results in

dw(V , X̄) =

(4
3
,
4
3
, 1,

4
3
,
1
3

)⊤

,

i.e., there are at least three equal elements in the vector of distances. As a consequence, there are several valid
permutations w.r.t. X̄ , for example, σ1 = (1, 2, 4, 3, 5) and σ2 = (1, 4, 2, 3, 5). With just a small shift of one of the
new facilities (for example, moving x̄2 towards v5), this equality of weighted distances is broken and at least one of the
permutations becomes invalid. This induces a non-linearity of the k-max objective function in X̄ .
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4.1. A finite dominating set based on linearity regions

In the following, let X = {x1, . . . , xp} be an arbitrary but fixed set of p new facilities with x1, . . . , xp ∈ A(G). Moreover,
let xq = (egq , tq) with egq = (vagq , vbgq ) for all q = 1, . . . , p and gq ∈ {1, . . . ,m}. For the weighted distance between a
customer vi ∈ V and X it holds that

dw(vi, X) = min
{
dw

+
(vi, x1), dw

−
(vi, x1), . . . , dw

+
(vi, xp), dw

−
(vi, xp)

}
,

where dw
+
(vi, xj) = wi (d(vi, vagj

) + tj lgj )

and dw
−
(vi, xj) = wi (d(vi, vbgj

) + (1 − tj) lgj ) for j = 1, . . . , p

The valid ordering of the components of the vector of weighted distances dw(V , X) is unique when none of its components
are equal, and it may change whenever at least two of its components are equal, i.e., whenever

dw
α (vi, xq) = dw

β (vj, xr ) (3)

for some i, j ∈ {1, . . . , n}, q, r ∈ {1, . . . , p}, α, β ∈ {+, −} (where at least one of the pairs i, j, q, r and α, β is not
identical). Similarly, an individual weighted distance dw(vi, X) is piecewise linear with possible breakpoints only when
(3) is satisfied (with j = i). Hence, all points satisfying (3) may correspond to breakpoints of the objective function of the
p-k-max problem.

The above analysis suggests that the linearity regions, or rather their boundaries, induce an FDS for the p-k-max
problem which is a superset of C p≥2 and which potentially contains further optimal solutions. This FDS can be described
based on a subdivision of the unit hypercube [0, 1]p. More precisely, p-tuples of edges eg1 , . . . , egp ∈ E with g1 ≤

g2 ≤ · · · ≤ gp are considered, where each edge is identified with the unit interval [0, 1]. The Cartesian product
eg1 × · · · × egp is represented by the unit hypercube [0, 1]p. Let g = (g1, . . . , gp) ∈ {1, . . . ,m}

p indicate an arbitrary
but fixed p-tuple of edges. The p new facilities x1 = (eg1 , t1), . . . , xp = (egp , tp) are assumed to be located on the edges
eg1 , . . . , egp , i.e., X ⊆ A(G) for short (by slightly abusing the notation). Note that since the ordering of the new facilities
in X = {x1, . . . , xp} is not relevant, all feasible solutions can be associated with a p-tuple of edges g = (g1, . . . , gp) and
with a point (t1, . . . , tp) ∈ [0, 1]p in the corresponding unit hypercube. However, since several components of g (and thus
edges in the corresponding p-tuple) may be equal, this is in general not a one-to-one correspondence, i.e., one solution X
may correspond to several points in the associated unit hypercube if several new facilities are located on the same edge.

Now the linearity regions of the k-max function can be described by a subdivision of all relevant p-tuples g of edges
and their associated unit hypercubes [0, 1]p. Let g be arbitrary but fixed. Then all breakpoints of the k-max function on
[0, 1]p must satisfy Eq. (3). In the following, all solutions of Eq. (3) in [0, 1]p will be determined by distinguishing four
possible cases for the choice of the indices i, j ∈ {1, . . . , n} and q, r ∈ {1, . . . , p}. Note that the point set determined in
this way certainly contains all boundaries of linearity regions of the k-max function.

Case 1: i ̸= j and q = r , i.e., dw
α (vi, xq) = dw

β (vj, xq) for i, j ∈ {1, . . . , n}, i ̸= j, q ∈ {1, . . . , p} and α, β ∈ {+, −}. In this
case, the set of breakpoints is given by

Bα,β

ijqq :=

{
{x1, . . . , xp} ⊂ (eg1 ∪ · · · ∪ egp ) : xq = EQ

egq
ij (α, β)

}
,

where EQ
egq
ij (α, β) denotes the unique equilibrium point on egq = (vagq , vbgq ) for vi, vj and for a fixed combination of

α, β ∈ {+, −} (if it exists on egq ). Analyzing all four possible combinations of α and β leads to four equations describing
the corresponding locations of xq = (egq , tq):

tq =
wjd(vj, vagq ) − wid(vi, vagq )

wilgq − wjlgq
=: t++

q , if wi ̸= wj (4)

tq =
wjd(vj, vbgq ) + wjlgq − wid(vi, vagq )

wilgq + wjlgq
=: t+−

q (5)

tq =
wjd(vj, vagq ) − wid(vi, vbgq ) − wilgq

−wilgq − wjlgq
=: t−+

q (6)

tq =
wjd(vj, vbgq ) + wjlgq − wid(vi, vbgq ) − wilgq

−wilgq + wjlgq
=: t−−

q , if wi ̸= wj. (7)

Note that the set Bα,β

ijqq corresponds to the intersection of [0, 1]p with a hyperplane which is given by {(t1, . . . , tp) ∈

Rp
: tq = tα,β

q }, α, β ∈ {+, −}. Such hyperplanes are called equilibrium hyperplanes in the following, see Fig. 4a for
an illustration.

Case 2: i ̸= j and q ̸= r , i.e., dw
α (vi, xq) = dw

β (vj, xr ) for i, j ∈ {1, . . . , n}, i ̸= j, q, r ∈ {1, . . . , p}, q ̸= r , and α, β ∈ {+, −}.
The set of breakpoints in this case is given by

Bαβ

ijqr :=
{
{x1, . . . , xp} ⊂ (eg1 ∪ · · · ∪ egp ) : dw

α (vi, xq) = dw
β (vj, xr )

}
,
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Fig. 4. Some boundaries of linearity regions for the instance introduced in Example 4.1.

for α, β ∈ {+, −}. The set Bαβ

ijqr contains all solutions that have two facilities on the edges egq and egr , respectively,
which have the same weighted distance to two different customers vi and vj. Analyzing again all four cases of α-β-
combinations leads to the following equations in tq, tr ∈ [0, 1] that describe the corresponding locations of xq = (egq , tq)
and xr = (egr , tr ):

wi lgq tq − wj lgr tr = wj d(vj, vagr ) − wi d(vi, vagq ) (8)

wi lgq tq + wjlgr tr = wj d(vj, vbgr ) − wi d(vi, vagq ) + wj lgr (9)

−wi lgq tq − wjlgr tr = wj d(vj, vagr ) − wi d(vi, vbgq ) − wi lgq (10)

−wi lgq tq + wj lgr tr = wj d(vj, vbgr ) − wi d(vi, vbgq ) − wi lgq + wj lgr . (11)

The hyperplanes in Rp defined by these equations (c.f. Case 1 above) are called balance hyperplanes, see Fig. 4b for an
illustration.

Case 3: i = j and q = r , i.e., dw
α (vi, xq) = dw

β (vi, xq) such that i ∈ {1, . . . , n}, q ∈ {1, . . . , p} and α, β ∈ {+, −}, α ̸= β .
W.l.o.g. let (α, β) = (+, −). The set of breakpoints is then given by

B+−

iiqq :=

{
{x1, . . . , xp} ⊂ (eg1 ∪ · · · ∪ egp ) : xq = BN

egq
i

}
,
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where BN
egq
i denotes the unique bottleneck point on egq = (vagq , vbgq ) for vi (if it exists on egq ). Solving Eq. (3) for tq to

obtain the corresponding location of xq = (egq , tq) leads to

tq =
wid(vi, vbgq ) + wilgq − wid(vi, vagq )

2wilgq
. (12)

The hyperplanes in Rp defined by these equations are called bottleneck hyperplanes, see Fig. 4c for an illustration.

Case 4: i = j and q ̸= r , i.e., dw
α (vi, xq) = dw

β (vi, xr ) for i ∈ {1, . . . , n}, q, r ∈ {1, . . . , p}, q ̸= r , and α, β ∈ {+, −}. Note that
this case can be integrated in Case 2 above. However, since it corresponds to a different geometric situation, we discuss
it here for the sake of clarity. The set of breakpoints in this case is described by the set

Bαβ

iiqr :=
{
{x1, . . . , xp} ⊂ (eg1 ∪ · · · ∪ egp ) : dw

α (vi, xq) = dw
β (vi, xr )

}
.

This set contains pairs of new facilities xq = (egq , tq) and xr = (egr , tr ) that have the same distance to the customer vi. The
corresponding equations in tq, tr ∈ [0, 1], derived from all possible α-β-combinations, are:

lgq tq − lgr tr = d(vi, vagr ) − d(vi, vagq ) (13)

lgq tq + lgr tr = d(vi, vbgr ) − d(vi, vagq ) + lgr (14)

−lgq tq − lgr tr = d(vi, vagr ) − d(vi, vbgq ) − lgq (15)

−lgq tq + lgr tr = d(vi, vbgr ) − d(vi, vbgq ) − lgq + lgr . (16)

Due to the similarity to Case 2, the corresponding hyperplanes in Rp are also called balance hyperplanes, see Fig. 4d for
an illustration.

Note that Eqs. (4)–(16) describe hyperplanes in Rp. Only the intersection of these hyperplanes with the unit hypercube
(which may be empty) are of interest since t1, . . . , tp have to be in [0, 1] to describe a point on an edge of the graph. In
Cases 1 and 3 these hyperplanes are parallel to a face of [0, 1]p.

In the following, let again g = (g1, . . . , gp) be an arbitrary but fixed vector of indices of edges eg1 , . . . , egq with
g1 ≤ g2 ≤ · · · ≤ gp. The set of equilibrium, bottleneck and balance hyperplanes for a fixed pair of customers
i, j ∈ {1, . . . , n} is denoted by Lijg . By

⋃
i,j∈{1,...,n} Lijg the set of all hyperplanes for all pairs of customers is described:

Lg =

⋃
i,j∈{1,...,n}

Lijg ∪

⋃
ℓ∈{1,...,p}

{t ∈ Rp: tℓ = 0} ∪

⋃
ℓ∈{1,...,p}

{t ∈ Rp: tℓ = 1}

The arrangement of hyperplanes Lg defines a subdivision of the unit cube [0, 1]p. Any non-empty intersection of the unit
cube [0, 1]p with a set of halfspaces corresponding to the hyperplanes in Lg is a face of the subdivision. A face is denoted
as j-face if its dimension is j. In particular, a p-face is called a cell C ⊂ [0, 1]p of the arrangement and the set C(Lg ) denotes
the set of all cells of Lg . The extreme points of a cell C ∈ C(Lg ) are 0-faces, which are also called vertices. The set of all
vertices of Lg is denoted by V (Lg ). The (p − 1)-faces are also called facets of the arrangement. Note that V (Lg ) coincides
with the set of all 0-dimensional intersections of hyperplanes in Lg . For an illustration see Fig. 5, and for more information
on arrangements of hyperplanes see, for example, [8].

Let L′
g be the arrangement of hyperplanes in [0, 1]p that is defined only by the boundary faces of [0, 1]p and the

equilibrium and the balance hyperplanes (Cases 1, 2 and 4), see Fig. 6.

Theorem 4.3. Let g = (g1, . . . , gp) be an arbitrary but fixed vector of indices of edges eg1 , . . . , egp with g1 ≤ g2 ≤ · · · ≤ gp.
Then the objective function of the p-k-max problem on graphs is linear on every cell C ∈ C(Lg ) and it is concave on every cell
C ′

∈ C(L′
g ).

Proof. Follows from the construction of the equilibrium, bottleneck, and balance hyperplanes: Consider an arbitrary
solution X ⊆ A(G). Then the valid permutation σ ∈ Σ(X) is unique (and remains unchanged in a neighborhood of X
in A(G)) as long as X is not on any equilibrium hyperplane according to Case 1, and not on any balance hyperplane
according to Case 2. Similarly, the weighted distances dw(vi, X), i ∈ {1, . . . , n} are piecewise linear over [0, 1]p and may
have breakpoints only on bottleneck hyperplanes according to Case 3, and on balance hyperplanes according to Case 4.
Thus, the k-max function is linear on every cell C ∈ C(Lg ). Furthermore, bottleneck hyperplanes describe maxima of the
weighted distance functions the k-max function is concave on every cell C ′

∈ C(L′
g ). □

Theorem 4.4. Let n ≥ 2, p ∈ {1, . . . , n} and k ∈ {1, . . ., n − p}. At least one optimal solution of the p-k-max problem can
be found in the set

V (L′) =

⋃
g∈{1,...,m}p,
g1≤···≤gp

V (L′

g ).
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Fig. 5. Illustration of an exemplary subdivision Lg over [0, 1]2 induced by equilibrium, bottleneck and balance lines.

Fig. 6. Illustration of an exemplary subdivision L′
g over [0, 1]2 deduced from Lg by eliminating all bottleneck lines. The points indicate the set V (L′).

Proof. Let g = (g1, . . . , gp)T ∈ {1, . . . ,m}
p with g1 ≤ · · · ≤ gp be arbitrary but fixed. Following Theorem 4.3, the k-max

function is concave on each cell C ′ of the subdivision L′
g of the unit hypercube [0, 1]p. Moreover, every cell is convex and

compact. Thus, a local minimum of the k-max function is attained on the boundary of a cell C ′
∈ C(L′

g ). In particular, the
set V (L′

g ) contains a local optimal solution of the p-k-max-problem restricted to the current p-tuple g . □

Remark 4.5. Note that since the k-max function is piecewise linear and concave on each cell C ′
∈ C(L′

g ), V (L′) forms a
skeleton of optimal solutions, i.e. it contains at least one solution in each connected component of X ∗. However, we use
in the following a refined subdivision into linearity regions to determine the complete optimal set. This is the topic of
Section 4.3.

Note that the set V (L) =
⋃

g∈{1,...,m}p,g1≤···≤gp V (Lg ) is of course also an FDS for the p-k-max problem as it is a superset
of V (L′).

For a fixed vector g ∈ {1, . . . ,m}
p, g1 ≤ · · · ≤ gp, of edge indices, there exist at most O(n2p) equilibrium hyperplanes,

O(n p) bottleneck hyperplanes and O(n2p2) balance hyperplanes. This adds up to at most O(n2p2) hyperplanes that
constitute Lg . To determine the number of candidates resulting from the subdivision Lg , the number of 0-faces of
the arrangement is needed. Following [8], the number of 0-faces of an arrangement of O(n2p2) hyperplanes in Rp is
asymptotically bounded by

f p0 (n
2p2) =

(
p
0

)(
n2p2

p

)
∈ O(n2pp2p).

Hence, the size of V (Lg ) is bounded by O(n2pp2p). Since there are O(mp) possible vectors g = (g1, . . . , gp) ∈ {1, . . . ,m}
p

with g1 ≤ · · · ≤ gp, the cardinality of the FDS V (L) is O(mpn2pp2p). As p is assumed to be fixed, this equals a size of
O(mpn2p).

Every subdivision Lg of [0, 1]p for a fixed g and all of its j-faces for j = 1, . . . , p can be constructed in O(n2pp2p) time
using the algorithm of Edelsbrunner et al. [9]. The evaluation of one candidate point can be realized in O(n(p + log(n)))
time. Therefore, all candidates in V (Lg ) need O(n2p+1p2p(p + log(n))) time to be evaluated. As O(mp) subdivisions have to
be considered, the overall complexity of this approach can be bounded by O(mpn2p+1p2p(p + log(n))), which is mainly
determined by the evaluation of the candidate points. With a fixed p, this simplifies to O(mpn2p+1 log(n)) time for
finding at least one optimal solution of the p-k-max problem utilizing the FDS V (L). Note that for fixed values of k (not
increasing with n) the kth largest entry can be determined more efficiently without a complete sorting, reducing the
overall complexity to O(mpn2p+1).
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4.2. Linearity regions and objective value defining facilities

Using the fact that for n−p ≥ 2 every optimal solution of the p-k-max problem has an objective value defining facility
in the set EQ (see Theorem 3.3), the FDS V (L) can be reduced significantly. Let z∗ be the optimal objective function value
and let

Y =

{
x∗

1 ∈ EQij, i, j ∈ {1, . . . , n}, i ̸= j: ∃ X∗
= {x∗

1, . . . , x
∗

p} ∈ X ∗

with r1 = dw(vi, x∗

1) = dw(vj, x∗

1) = z∗

}
denote the set of all facility locations that are objective value defining facilities in at least one optimal solution in X ∗

(recall that r1 denotes the radius of the cluster C1 of customers associated to x∗

1). Since the FDS C p≥2 contains at least
one optimal solution for each of the objective value defining facilities in the set Y , the set Y can be computed from the
set XCp≥2 of optimal solutions resulting from an optimization process based on C p≥2 (see, for example, the recursive
approach in [24]).

Now consider an arbitrary but fixed point x∗

1 = (eg∗
1
, t∗1 ) ∈ Y on an edge eg∗

1
, i.e., x∗

1 ∈ EQij∩eg∗
1
for some i, j ∈ {1, . . . , n},

i ̸= j. Then all alternative optimal solutions with x∗

1 as objective value defining facility define the set

X (x∗

1) =
{
X = {x∗

1, x2, . . . , xp}: x2, . . . , xp ∈ A(G) ∧ dw(vσ (k), X) = z∗
}
,

and X ∗
=

⋃
x∗1∈Y X (x∗

1). To guarantee that none of the optimal solutions in X (x∗

1) is missed, all p-tuples g = (g∗

1 , g2, . . . , gp)
with g2 ≤ · · · ≤ gp have to be enumerated. Note that the index g∗

1 is fixed with x∗

1 and kept in the first position of the
p-tuple g to indicate that it corresponds to the objective value defining facility, even though g∗

1 ≰ g2 in general. Since the
assumption g1 ≤ g2 ≤ · · · ≤ gp was used only to avoid duplications, this has no effect on the correctness of the following
analysis.

Given an arbitrary but fixed p-tuple g = (g∗

1 , g2, . . . , gp) with g2 ≤ · · · ≤ gp, all alternative optimal solutions in X (x∗

1)

have to lie on that equilibrium hyperplane in [0, 1]p that corresponds to Bα,β

ij11 and that is given by {(t1, . . . , tq)T ∈ Rp
:

t1 = t∗1 } =: eqg (x∗

1). Let Lg (x
∗

1) be the subdivision of [0, 1]p arising from Lg by deleting all bottleneck hyperplanes of type
Bαβ

cc11 and all equilibrium hyperplanes of type Bαβ

cd11 except for eqg (x∗

1) for all c, d = 1, . . . , n, c ̸= d, and α, β ∈ {+, −}.
Note that these hyperplanes are parallel to eqg (x∗

1) and contain therefore no solution in X (x∗

1). C(Lg (x
∗

1)) denotes the set
of cells of this subdivision. Moreover, let

Leqg (x∗

1) := Lg (x∗

1) ∩ eqg (x∗

1)

be the subdivision Lg (x∗

1) restricted to eqg (x∗

1), and let V (Leqg (x∗

1)) be the set of all 0-faces of the subdivision Lg (x∗

1) that lie
on the hyperplane eqg (x∗

1), i.e., the set of all points on eqg (x∗

1) that are intersected by at least p−1 of the other hyperplanes
in Lg (x∗

1).

Corollary 4.6. Let x∗

1 = (eg∗
1
, t∗1 ) ∈ Y and let g = (g∗

1 , g2, . . . , gp) be an arbitrary but fixed vector of edge indices with
g2 ≤ · · · ≤ gp. Then the k-max function is linear on every intersection of a cell of C(Lg (x∗

1)) with eqg (x∗

1).

Proof. Follows by construction and using Theorem 4.3. □

Corollary 4.6 immediately implies the following result.

Corollary 4.7. Let X∗
= {x∗

1, . . . , x
∗
p} ∈ XCp≥2 with x∗

1 = (eg∗
1
, t∗1 ) ∈ Y and g∗

1 ∈ {1, . . . ,m}. If the p-k-max problem with
n, p ≥ 2 and k ≤ n− p has more than one optimal solution in X (x∗

1), at least one of these alternative optimal solutions can be
found in the set

V (Leq(x∗

1)) :=

⋃
g=(g∗

1 ,g2 ...,gp)∈{1,...,m}p
g2≤···≤gp

V (Leqg (x∗

1)).

Taking the union over all candidates x∗

1 ∈ Y , an extended FDS is obtained as

V (Leq(Y )) :=

⋃
x∗1∈Y

V (Leq(x∗

1)).

Note that by construction, (C p≥2
∩ X ∗) ⊆ V (Leq(Y )), and that in general both sets do not have to be equal since the

arrangement of hyperplanes generating V (Leq(Y )) also includes bottleneck and balance hyperplanes. Moreover, since for
every x∗

1 ∈ Y , the k-max function is linear on every intersection of a cell in C(Lg (x∗

1)) with eqg (x∗

1) (see Corollary 4.6), the
optimal solutions in the FDS V (Leq(Y )) can be used as seed points for the generation of the complete optimal set X ∗. This
is the topic of Section 4.3.
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To summarize, the procedure to determine all those optimal solutions of the p-k-max problem that lie in the FDS
V (Leq(Y )) (and hence all seedpoints needed for the determination of the complete optimal set) is given by the following
steps: For a fixed x∗

1 ∈ Y , at first, the subdivisions Lg (x∗

1) of [0, 1]p for all g = (g∗

1 , g2, . . . , gp) ∈ {1, . . . ,m}
p, g2 ≤ · · · ≤ gp,

have to be constructed. Afterwards, the 0-faces, i.e., the intersection points of eqg (x∗

1) with the other relevant equilibrium
and balance hyperplanes, have to be determined. Then, the k-max function is evaluated in these candidate points, and all
such points leading to the smallest objective function value z∗ are optimal. This is done for all objective value defining
facilities in x∗

1 ∈ Y , which can be obtained in a preprocessing procedure based on the set C p≥2, see [24]. The procedure is
described in more detail in Algorithm 1.

The computational effort of considering all elements of the set Y is O(mn2), which is the maximum number of
equilibrium points of G. For fixed x∗

1 ∈ Y , the number of p-tuples g = (g1, . . . , gp) ∈ {1, . . . ,m}
p that have to be

considered is O(mp−1) since g1 = g∗

1 is fixed. The maximum number of equilibrium-, bottleneck- and balance hyperplanes
is |H| = O(n2p2). For the computation of H ′ in Step 9, all these hyperplanes have to be considered and each intersection
of h ∈ H and eqg (x∗

1) can be determined in O(p) time. The subdivision Leqg (x∗

1) can be constructed with the algorithm
of Edelsbrunner [8] in O((n2p2)p−1) time as Leqg (x∗

1) is a subdivision of the unit hypercube [0, 1]p−1. Following [8], the
number of 0-faces in V (Leqg (x∗

1)) is bounded by O((n2p2)p−1). As every candidate solution needs O(n(p + log(n))) time
to be evaluated, the evaluation of all 0-faces in Leqg (x∗

1) has a complexity of O(n2p−1p2p−2(p + log(n))). Hence, an overall
complexity for Algorithm 1 of O(mpn2p+1 log(n)) (for fixed p) follows, which is mainly determined by the evaluation of
the FDS V (Leq(Y )).

Algorithm 1 Local Analysis of the p-k-max problem on networks

Input: Graph G = (VG, E); customers V = {v1, . . . , vn} ⊆ VG with wi > 0 for all i = 1, . . . , n; p ∈ {2, . . . , n};
k ∈ {1, . . . , n − p}; optimal objective value z∗; set Y of z∗-defining equilibrium points.

1: Vopt := ∅; H ′
:= ∅

2: for all x∗

1 = (eg∗
1
, t∗1 ) ∈ Y do // z∗-defining facilities

3: for all (g2, . . . , gp)T ∈ {1, . . . ,m}
p−1: g2 ≤ . . . ≤ gp do

4: g := (g∗

1 , g2, . . . , gp) // p-tuples g with fixed edge g∗

1

5: Derive the set H of equilibrium-, bottleneck- and balance hyperplanes ...................... for eg∗
1

× . . . × egp
6: for all a = 1, . . . , |H| do
7: h′

= ha ∩ eqg (x∗

1) with ha ∈ H
8: H ′

= H ′
∪ h′ // Hyperplanes defining the subdivision restricted to eqg (x∗

1)

9: Derive the subdivision Leqg (x∗

1) = Lg (x∗

1) ∩ eqg (x∗

1) of H
′

10: for all Xi ∈ V (Leqg (x∗

1)) do // Test all 0-faces for optimality
11: zi = k-max(dw(V , Xi)) // Objective function value
12: if zi = z∗ then // Xi is optimal
13: Vopt = Vopt ∪ {Xi}

Output: Set X = Vopt of optimal solutions of the p-k-max problem with optimal objective function value z∗

Note that the set V (Leq(Y )) contains alternative optimal solutions (if existent) that cannot be found in the candidate
set C p≥2. Thus, the application of Algorithm 1 provides useful additional information without increasing the overall worst
case complexity determined by the evaluation of the FDS C p≥2. Note also that the algorithm can be parallelized easily.
Preliminary computational tests indicate that this leads to a significant improvement of the computation time in practice.

Remark 4.8. The worst case complexity of O(mpn2p+1 log(n)) is generally a very pessimistic estimate as the number
of optimal 0-faces as well as the number of all other relevant s-faces for s ∈ {1, . . . , p − 1} is upper bounded using
the maximum possible number of faces. However, in practice, the number of these faces is in general much smaller, see
Section 5 for corresponding computational results.

4.3. Determining all (infinitely many) optimal solutions

There may still be optimal solutions that cannot be found in the FDS V (Leq(Y )). In Example 4.1, it is easy to verify that
not only the two points X and X̄ are optimal: All alternative optimal solutions X̂ = {x1, x̂2} with objective value defining
facility x1 = (e34, 1

3 ) are given by

x̂2 ∈

[(
e12, 0

)
,

(
e12,

1
3

)]
∪

[(
e13, 0

)
,

(
e13,

1
3

)]
∪

[(
e15, 0

)
,

(
e15,

2
3

)]
.
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These additional optimal solutions can be easily computed when the optimal solutions in V (Leq(x∗

1)) are known. For this
purpose, let conv(A) be the convex hull of the elements in a set A.

Theorem 4.9. Let n, p ≥ 2 and k ≤ n − p, and let X∗
= {x∗

1, . . . , x
∗
p} ∈ XCp≥2 with optimal objective function value z∗ and

x∗

1 = (eg∗
1
, t∗1 ) ∈ Y with g∗

1 ∈ {1, . . . ,m} be fixed. Moreover, for a fixed g = (g∗

1 , g2, . . . , gp) ∈ {1, . . . ,m}
p, g2 ≤ · · · ≤ gp,

and a cell C̄ ∈ C(Lg (x∗

1)), let

V ∗(C̄ eq) :=
{
X̄ ∈ V (Leqg (x∗

1)) : X̄ ∈ C̄ ∧ dw(V , X̄) = z∗
}

be the set of all vertices of the cell C̄ that are in eqg (x∗

1) and that are optimal for the p-k-max problem. Then, all solutions

X = {x∗

1, x2, . . . , xp} with X ∈ conv(V ∗(C̄ eq))

are optimal solutions of the p-k-max problem.

Proof. Recall from Corollary 4.6 that the k-max function is linear on every intersection of a cell C̄ ∈ C(Lg (x∗

1)) with
eqg (x∗

1). Let C̄ eq
= C̄ ∩ eqg (x∗

1). Since all solutions in V ∗(C̄ eq) have the same (optimal) objective value z∗ and since
conv(V ∗(C̄ eq)) ⊆ C̄ eq, this implies that the k-max function is constant over conv(V ∗(C̄ eq)). Consequently, all solutions
X = {x∗

1, x2, . . . , xp} with X ∈ conv(V ∗(C̄ eq)) are optimal solutions of the p-k-max problem. □

As a consequence of Theorem 4.9, b-faces up to a dimension of b = p − 1 can be optimal for the p-k-max problem. A
whole cell of the subdivision cannot be optimal because otherwise the objective value defining facility would not be an
equilibrium point. Thus, the complete set of optimal solutions X ∗ can be determined by enumerating all such b-faces.

From an algorithmic perspective, if only one new facility is to be located, i.e., p = 1, then this facility is always objective
value defining. In this case, the linearity regions of the k-max function can be derived from the set EQ , see [24]. All optimal
solutions can then be easily computed. In the special case of two new facilities, determining the set V ∗(C̄ eq) of all optimal
intersection points that belong to the same cell is still quite easy since two optimal, adjacent 0-faces can be identified by
sorting the coordinates of the optimal intersection points with respect to their x2-coordinate.

Example 4.10 (Continuation of Example 4.1). The local analysis is applied to the 2-1-max problem on the graph introduced
in Example 4.1. An optimal solution computed by the evaluation of the FDS C p≥2 (see Theorem 3.3) is

X = {x1, x2} with x1 =

(
e34,

1
3

)
and x2 =

(
e12,

1
3

)
,

with optimal objective value z =
4
3 and objective value defining facility x1. Since x1 ∈ e6 = e34, this determines g1 = 6. The

arrangement of hyperplanes L(6,h)(x1) for h ∈ {1, . . . , 5, 7} are shown in Fig. 7. Note that in the case of p = 2 new facilities,
and given that k ≤ n − p, the two new facilities are on different edges in all optimal solutions (see [23]). Thus, the case
L(6,6)(x1) is not considered. The analyzed candidate intersection points are marked with an empty circle, the intersection
points and the line segments that contain the local minima are marked with filled circles in gray (see Fig. 7(d)–(f)).
The local minima that are also globally optimal are drawn in black (see Fig. 7(a)–(c)). Therefore, the alternative optimal
solutions with x1 as objective value defining facility are given by X (x1) = {x1, x̃2} with

x̃2 ∈

[(
e12, 0

)
,

(
e12,

1
3

)]
∪

[(
e13, 0

)
,

(
e13,

1
3

)]
∪

[(
e15, 0

)
,

(
e15,

2
3

)]
.

These alternative optimal solutions are illustrated in Fig. 8.

For the case p ≥ 3 this identification is much more complicated. An outline of a possible implementation is given
in the following. Edelsbrunner [8] introduced an algorithm for constructing an arrangement of hyperplanes in Rp, i.e., an
algorithm that builds up a data structure I(H) = (V (I), E(I)) called incidence graphwhich stores all faces of the arrangement
and also all incidences between pairs of faces. Let H be a set of |H| = a hyperplanes in Rp and let A(H) be the arrangement
resulting from H . Each face f of A(H) is represented by a vertex v(f ) ∈ V (I) and if two faces f and f ′ are incident, the
vertices v(f ) and v(f ′) are connected by an edge. Besides the regular s-faces of dimension 0 ≤ s ≤ p, two more faces
are defined: The (−1)-face (representing an empty set) is incident with all vertices of I(H) representing a 0-face and the
(p+1)-face (representing A(H)) is incident with all vertices representing a p-face (see Fig. 9). Note that an incidence graph
of a set of a hyperplanes in Rp contains O(ap) vertices and edges.

The incidence graph can be used to analyze which optimal 0-faces of Lg (x∗

1) belong to the same cell, implying that their
convex hull is optimal for the p-k-max problem. The subdivision of [0, 1]p induced by Lg (x∗

1) for a fixed p-tuple of edges
g is an arrangement of at most O(n2p2) hyperplanes. As x∗

1 is fixed, and with it also the equilibrium hyperplane eqg (x∗

1), it
is sufficient to analyze the subdivision Leqg (x∗

1) = Lg (x∗

1)∩ eqg (x∗

1) in Rp−1. The notation for the faces (vertices, cells etc.) of
Leqg (x∗

1) are adapted from the subdivisions before. Let I(Leqg ) = (V (I), E(I)) denote the incidence graph of Leqg (x∗

1). The idea is
to go bottom-up through the incidence graph and to identify for each dimension s ∈ {0, . . . , p − 1} the optimal s-faces.
Note that the optimal 0-faces can be determined easily. An s-face for s ≥ 2 is only optimal if all of its incident (s−1)-faces
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Fig. 7. Arrangement of hyperplanes L(6,h)(x1) with h = 1, . . . , 7, h ̸= 6. Intersection points (circles), local minima (gray dots) and global minima
(black dots). The latter are the optimal solutions in X = X (x1) of the 2-1-max problem.

are optimal. Thus, let

Vs :=
{
vs
i ∈ V (I) : f si is ith optimal s-face, i ∈ {1, . . . , |Vs|}

}
with s ∈ {0, . . . , p − 1}. Note that all X ∈ f si for a corresponding vs

i ∈ Vs are optimal solutions for the p-k-max problem
and that V0 equals the set of optimal extreme points in V (Leqg (x∗

1)). In the following, no distinction will be made between
the faces f si of Leqg (x∗

1) and the nodes vs
i ∈ V (I) that represent them.

It is now assumed that the set Vs−1 of optimal (s − 1)-faces is known. Let vs−1
i ∈ Vs−1 be the ith optimal (s − 1)-face,

i ∈ {1, . . . , |Vs−1|}, and let vs
j be an s-face incident to vs−1

i such that (vs−1
i , vs

j ) ∈ E(I). Then, vs
j is optimal for the p-k-max
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Fig. 8. Set X (black) of all optimal solutions of the 2-1-max problem with z∗
=

4
3 .

Fig. 9. Arrangement A(H) in R2 and its incidence graph I(H).

problem if and only if it holds that

vs−1
h ∈ Vs−1 for all (vs−1

h , vs
j ) ∈ E with h ∈ {1, . . . , |Vs−1|}, (17)

i.e., if all of its incident subfaces vs−1
h are optimal. Note that it is enough to analyze just one incident optimal vs

i′ ̸= vs−1
i

because then the other incident subfaces also have to be optimal as the k-max function is constant over f sj if it is constant
over two of its (s − 1)-dimensional boundary faces. Thus, if condition (17) is satisfied, then vs

j is an element of Vs. If
condition (17) is not satisfied for all superfaces f sj of f s−1

i , then f s−1
i does not contribute to an optimal face of a larger

dimension and is stored in the set Fopt of optimal faces of Leqg (x∗

1). As a consequence, only optimal faces of maximum
dimension are stored and not also all their smaller-dimensional subfaces.

As at least s+ 1 optimal (s− 1)-faces are needed to construct an optimal s-face, the condition |Vs−1| < s+ 1 is used as
a stopping criterion. A set EPopt is generated analogously to Fopt . Each element M of EPopt is a set that contains the optimal
0-faces of a cell C̄ ∈ C(Leqg (x∗

1)) having at least one optimal 0-face.
Going through all dimensions s ∈ {0, . . . , p−1} needs at most O(p) time. The number of all (s−1)-faces is bounded by

O((n2p2)p−1) (see [8]). Thus, |Vs−1| = O((n2p2)p−1). All s-faces vs
j have to be considered, not only the optimal ones, which

leads to O((n2p2)p−1) time. To find all subfaces vs−1
i incident to vs

j , all predecessors of vs
j have to be analyzed. Since a face

can be bounded by at most all n2p2 hyperplanes, the complexity to check this is O(n2p2). Considering all (s − 1)-faces
that are incident to vs

j also needs O(n2p2) time in the worst case. This leads to a complexity of O(n4pp4p+1) resp. O(n4p)
for fixed p. In practice this procedure can be expected to be more efficient as the number of optimal s-faces is in general
much smaller than the total number of s-faces.

5. Computational results

In the following, the local analysis approaches for the p-k-max problem developed in the previous chapters are
compared and computationally evaluated for the case of two new facilities, i.e. p = 2. Thereby, two versions of the
local analysis are compared: The evaluation of the FDS V (L′) (see Theorem 4.4), in the following referred to as full local
analysis, and the evaluation of the reduced FDS V (Leq(Y )) (see Corollary 4.7), named reduced local analysis.
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Table 1
Evaluation of the FDS V (L′) (see Theorem 4.4): Numbers of candidates and CPU-times in seconds for
given number of n customers and given density ρ of the graph, distinguished w.r.t. the value of k.
n ρ |V (L′)| k = 1 k = 0.25n k = 0.75n

10 0.1 – – – –
0.3 1 043 016 11.47 11.49 11.49
0.5 4 667 700 50.94 51.02 50.99

20 0.1 11 783 328 200.34 200.59 200.28
0.3 453 873 031 8029.16 8032.07 8069.94
0.5 >900 000 000 >18000 >18000 >18000

30 0.1 291 740 500 7883.21 7904.61 7903.58
0.3 >700 000 000 >18000 >18000 >18000

Table 2
Evaluation of the reduced local analysis (Corollary 4.7): Numbers of candidates and CPU-times in seconds for given number of n customers and
given density ρ of the graph, both distinguished w.r.t. the value of k.
n ρ k = 1 k = 2 k = 0.25n k = 0.5n k = 0.75n

|V (Leq(Y ))| Time [s] |V (Leq(Y ))| Time [s] |V (Leq(Y ))| Time [s] |V (Leq(Y ))| Time [s] |V (Leq(Y ))| Time [s]

10 0.1 – – – – – – – – – –
0.3 1 443 0.205 1 447 0.164 1 495 0.136 1 499 0.075 1 467 0.069
0.5 3 200 0.622 3 242 0.461 3 315 0.338 3 315 0.174 3 173 0.073

20 0.1 5 122 1.371 5 079 1.260 5 035 0.978 5 044 0.465 5 033 0.180
0.3 30 056 44.915 30 351 35.598 32 559 22.119 31 904 8.813 31 799 1.815
0.5 59 202 153.727 58 902 115.934 59 796 64.449 60 737 24.503 60 283 3.858

30 0.1 33 344 60.932 33 389 53.101 33 227 29.416 33 273 13.567 33 581 2.924
0.3 164 714 1411.676 172 522 1140.710 175 160 503.864 174 677 211.478 175 079 31.636
0.5 305 911 4502.882 306 436 3762.006 314 682 1680.585 314 009 639.868 302 514 73.939

50 0.1 363 792 7135.507 355 796 6196.555 349 921 2495.658 355 217 949.539 362 752 212.869
0.3 – >18000 – >18000 – >18000 – >18000 1 425 648 2220.202
0.5 – >18000 – >18000 – >18000 – >18000 2 569 633 7684.503

All numerical tests are performed on a compute server with 4 Intel Xeon E7540 Hexacore (2.0 GHz) and 128 GB RAM
using a single thread. All algorithms are implemented and run in MATLAB, version R2013a. They were tested on randomly
generated Euclidean graphs: Given a number n of nodes and a density ρ of the graph, first the customer nodes are
randomly placed in integer coordinates vi = (xi1, x

i
2) ∈ Z2 in the plane (normally distributed with mean 50 and standard

deviation of 30. The associated weights are randomly chosen from the set wi ∈ {1, . . . , 15}, i = 1, . . . , n. Different values
of k between k = 1 and k = 0.75n are distinguished, while the number of new facilities to locate remains fixed to p = 2.
All tests are conducted up to a maximum computation time of five hours.

5.1. Full local analysis: Construction and evaluation of V (L′)

Table 1 summarizes the sizes of the FDS V (L′) for the tested instances and the corresponding computation times for
its evaluation. The size of the candidate set (and therefore also the CPU-time) increases dramatically with the size of the
underlying problem. As expected, the number of candidates and the computation times do not depend on the value of
k as the constructed subdivisions are independent of k. Moreover, the cardinality of V (L′) is significantly larger than the
cardinality of C p≥2: C p≥2 contains on average only 1.86% of the candidates in comparison to V (L′). However, the evaluation
of the FDS V (L′) contains in general a larger set of optimal solutions of the problem. Since the same solution sets can be
found with the reduced local analysis based on the set V (Leq(Y )), this is evaluated in the following section.

5.2. Reduced local analysis: Construction and evaluation of V (Leq(Y ))

The results of the tests for Algorithm 1 are given in Table 2. Note that the discrete version of the algorithm is tested,
i.e., not all (infinitely many) optimal solutions are computed but only the solutions belonging to the FDS V (Leq(Y )). From
these, the complete optimal set can be easily constructed. The number of candidates gives the number of intersection
points for all subdivisions. The CPU-time is measured for the overall procedure, including the recursive approach from [24]
to construct the set Y .

Note that, as the cardinality of the set Y of objective function value defining facilities may vary w.r.t. the value of k,
also the total number of candidates |V (Leq(Y ))| may differ with varying values of k. The computation times, in contrast,
decrease with an increasing value of the parameter k since the CPU-times of the recursive approach depend on k. It should
be mentioned that the given CPU-times are mainly determined by the recursive approach. The local analysis itself takes
only 14.38% on average of the overall computation times. Hence, the local analysis computes in general many alternative
optimal solutions with only small additional effort.
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Table 3
Number of optimal solutions in V (Leq(Y )) determined with the reduced local analysis.
n ρ k = 1 k = 2 k = 0.25n k = 0.5n k = 0.75n

10 0.3 116.70 101.60 89.20 78.25 310.55
0.5 85.80 99.85 98.70 137.00 512.20

20 0.1 620.15 415.25 300.85 247.60 190.55
0.3 378.25 499.35 152.10 445.60 353.15
0.5 533.55 690.90 233.45 537.95 987.45

30 0.1 1353.90 484.15 594.55 268.55 301.10
0.3 709.45 178.75 737.65 651.50 1051.50
0.5 1624.20 670.30 398.20 696.55 1378.30

5.3. Comparison of the full and the reduced local analysis

Obviously, the reduced local analysis yields much better results in terms of the CPU-time for all test instances than the
full local analysis. The reduced analysis needs on average over all test problems only 0.054% of the intersection points. This
does not vary significantly for different values of k. Moreover, the reduced local analysis needs only 1% of the CPU-times
as compared to the full local analysis for k = 1, 0.60% for k = 0.25n, 0.30% for k = 0.5n and 0.18% for k = 0.75n. This
can be explained by the corresponding dependence of the recursive approach on the parameter k, see also [24].

5.4. Complementing objectives: Selection of a most preferred solution

Optimization problems with bottleneck objectives (like p-k-max location problems) often have many or even infinitely
many optimal solutions. Even though these alternative optimal solutions share the same p-k-max objective function value,
they can be of completely different structure. Due to the computation of the complete set of optimal solutions in a
local analysis, secondary, possibly complementing objective functions can be used in a decision making step to select to
most preferred solution. This approach can be considered as the lexicographic optimization of a biobjective optimization
problem with k-max being the first objective. Then among all optimal solution wrt. the k-max-objective a secondary
objective function is optimized [10]. To illustrate the potential of secondary objective functions for decision making, we
evaluate the finite set of alternative optimal solutions (for each problem size on 20 randomly chosen instances) obtained
with the local analysis (cf. Table 3). In a similar way the results can be extended to the complete set of optimal solutions.

Depending on the considered application different secondary objectives can be relevant. The following evaluation
is restricted to three classical objective functions to show the potential gain in solution quality for the non-outlier
facilities, which we denote in the following as inliers V \V ∗

k−1: (a) The average Weber objective contribution of the inliers

z̄W :=
zW (V\V∗

k−1)
|V\V∗

k−1|
with zW (V \ V ∗

k−1) :=
∑

v∈V\V∗
k−1

dw(v, X), (b) the number |DC| of customers with double coverage within

the coverage radius z∗, and (c) the size of the largest cluster in relation to the number of inliers |Cmax|
n−k+1 . Note that in the

evaluation of the Weber objective function (a), outliers are excluded to obtain a measure on how compact the majority
of inlier customers lie inside their respective clusters. The motivation for quality measure (b) is that double covered
customers can be considered as more robustly supplied. Criterion (c) relates to capacity constraints, however, even in
the case of uncapacitated facility location as considered in this paper it is preferable to allocate customers uniformly to
new facilities. If Cmax denotes the cluster covering the largest number of customers, then |Cmax|

n−k+1 is the relative size of the
largest cluster related to the total number of inliers.

For these three quality measures, the maximum and minimum value over the set of k-max-optimal solutions are
determined and averaged over 20 instances for each problem type with n = 20 customers. Table 4 illustrates how
different alternative k-max-optimal solutions perform w.r.t. secondary objective functions. Interestingly, both the average
contribution to the Weber objective function of each inlier z̄W and the number of double covered customers |DC| reduce
clearly with increasing values of k. This is due to the fact that for large numbers of k only a small percentage of the
customers is covered, and that the new facilities are located as centers of compact clusters which might be far away from
each other. Moreover, the average contribution to the Weber objective function z̄W decreases with increasing values of ρ
since the average distance between customers are smaller in denser graphs. For the relative size of the largest cluster, no
clear trend depending on ρ and k can be observed.

For all three secondary objective functions considered above, the improvements that are possible when the complete
optimal set is known (and hence a most preferred solution can be selected) are significant. Since the presented local
analysis comes with comparably small additional computational effort, this is a clear statement in favor of computing
alternative optimal solutions.

6. Conclusions

In this paper an efficient approach for determining all optimal solutions of the p-k-max problem on a graph was
introduced. Starting from seed points from a finite dominating set, alternative optimal solutions of the p-k-max problem
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Table 4
Evaluation of alternative optimal solutions of the k-max problem with n = 20 customers w.r.t. Weber objective zW , number of double covered
customers |DC|, and size of the largest cluster in relation to the number of inliers |Cmax |

n−k+1 .

k ρ min z̄W max z̄W min |DC| max |DC| min |Cmax |

n−k+1 max |Cmax |

n−k+1

1 0.1 157.559 182.797 7.30 11.55 0.670 0.733
0.3 77.646 87.941 8.55 9.60 0.608 0.685
0.5 71.450 84.825 7.55 9.55 0.618 0.695

2 0.1 130.541 149.727 5.75 8.20 0.666 0.721
0.3 69.950 78.032 6.45 8.10 0.618 0.692
0.5 60.270 68.301 5.95 7.35 0.613 0.676

5 0.1 94.561 106.986 3.30 4.85 0.662 0.703
0.3 54.139 57.724 4.15 4.50 0.594 0.625
0.5 38.693 44.834 3.80 4.60 0.575 0.616

10 0.1 49.293 57.312 0.75 1.10 0.586 0.623
0.3 26.383 30.886 1.65 2.15 0.559 0.623
0.5 23.108 27.349 1.90 2.25 0.541 0.605

15 0.1 19.705 25.721 0.00 0.10 0.508 0.558
0.3 9.368 12.559 0.20 0.25 0.475 0.508
0.5 7.860 11.826 0.05 0.20 0.525 0.583

were obtained by performing a local analysis on each p-tuple of edges possibly containing the p new facilities. More
precisely, for a fixed p-tuple of edges all feasible solutions were associated with points in the unit hypercube [0, 1]p. It
was shown that the k-max function is piecewise linear and concave on every cell of a subdivision of [0, 1]p obtained from
an arrangement of so-called equilibrium hyperplanes and balance hyperplanes. Thus, the 0-faces of the arrangement of
hyperplanes are a finite dominating set for the p-k-max problem. For a fixed value of p, the finite dominating set is of
polynomial size and the p-k-max problem can be solved in polynomial time.

This candidate set is further reduced using the information given by the set of optimal objective value defining facilities.
As a consequence, only those 0-faces lying in a specific hyperplane of the subdivisions are needed. This reduces the
number of candidates enormously. Computational tests underlined this improvement in terms of much smaller CPU-times.
Moreover, all (infinitely many) optimal solutions of the p-k-max problem can be obtained by constructing the convex hull
of every set of optimal 0-faces that belong to the same cell of a subdivision. Having access to the complete optimal set
of p-k-max problems paves the ground for considering secondary objective functions and thus selecting a most preferred
solution from the often large set of solution alternatives. Computational tests were performed with averaging criteria
(e.g., w.r.t. total cost or equally distributed capacities) and robustness considerations (e.g., double coverage). The results
showed significant differences in the performance of solution alternatives. This is a strong indication that computing
complete optimal sets in center type location problems opens up an important and often unexplored optimization
potential.
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